1. Дано: угол 2 = угол 1 + 34<span>°;
Найти: угол 3.
Решение:
Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1.
Углы 1 и 2 - односторонние </span>при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение:
угол 1 + угол 1 + 34° = 180°.
Отсюда угол 1 = 73°.
Значит, угол 3 = 73°.
Ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°.
Найти: угол А, угол В.
Рисунок к задаче - в приложении к ответу.
Решение:
Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B.
Т.к. угол DCB = 37°, то угол B = 37°.
Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB.
Угол А = 180° - 90° - 37° = 53°.
<span>Ответ: угол А = 53°, угол В = 37°.</span>
из точки с рисуете отрезок такого же направления как сторона АС и такого же расстояния. Получается точка С1 из точки В такой же. ПОлучается В1. Бывшая точка С станет точкой А1
Рисунок во вложении
сумма векторов совпадает диагональю параллелограмма (AC).
если в обоих прямоугольны треугольниках гепотенуза и один и тот же катит равны ,то треугольники равны