Sin 3x - Sin 7x = √<span>3 Sin 2x
-2Cos5x Sin2x = </span>√3Sin2x
-2Cos5x Sin2x - √3Sin2x = 0
2Cos5x Sin2x + √3Sin2x = 0
Sin2x(2Cos5x + √3) = 0
Sin2x = 0 2Cos5x +√3 = 0
2x = πn , n∈Z Cos5x = -√3/2
x = nπ/2, n ∈ Z 5x = +-arcCos(√3/2) + 2πk , k ∈Z
5x = +-π/6 + 2πk , k ∈Z
x = +-π/30 + 2πk/2, k ∈Z
Найдите наибольшее или наименьшее значения квадратного трехчлена! 1)х²-2х+4. 2) -Х²+4Х+2 3) 2Х²+8Х-1. 4) -3Х²+6Х+2.
1)х²-2х+4.
Находим производную
у´=2х-2
Находим критические точки
2х-2=0
х=1
Отмечаем на числовой прямой критическую точку и определяем знак каждого промежутка
________-______1______+_______
↘ ↗
у´(0)=2*0-2=-2<0
у´(2)=2*2-2=2>0
т. к. производная в точке х=1 меняет знак с минуса на плюс, следовательно точка х=1, точка минимума и функция в ней принимает минимальное значение
у (1)= 1²-2*1+4=3
т. к. ветви параболы направлены вверх максимальное значение равно +∞
2) -Х²+4Х+2
Находим производную
у´=-2х+4
Находим критические точки
-2х+4=0
х=2
Отмечаем на числовой прямой критическую точку и определяем знак каждого промежутка
________+______2______-_______
↗ ↘
у´(0)= -2*0+4=4>0
у´(3)= -2*3+4=-2<0
т. к. производная в точке х=2 меняет знак с + на -, следовательно, точка х=2, точка максмума и функция в ней принимает максимальное значение
у (2)= -2²+4*2+2=14
т. к. ветви параболы направлены вниз минимальное значение равно -∞
3) 2Х²+8Х-1
Находим производную
у´=2х+8
Находим критические точки
2х+8=0
х=-4
Отмечаем на числовой прямой критическую точку и определяем знак каждого промежутка
________-______-4______+_______
↘ ↗
у´(-5)=2*(-5)+8=-2<0
у´(0)=2*0+8=8>0
т. к. производная в точке х=-4 меняет знак с минуса на плюс, следовательно точка х=-4, точка минимума и функция в ней принимает минимальное значение
у (-4)= 2(-4)²+8(-4)-1=32-32-1=-1
т. к. ветви параболы направлены вверх максимальное значение равно +∞
4) -3Х²+6Х+2.
Находим производную
у´=-3х+6
Находим критические точки
-3х+6=0
х=2
Отмечаем на числовой прямой критическую точку и определяем знак каждого промежутка
________+______2______-_______
↗ ↘
у´(0)= -3*0+6=6>0
у´(3)= -3*3+6=-3<0
т. к. производная в точке х=2 меняет знак с + на -, следовательно, точка х=2, точка максмума и функция в ней принимает максимальное значение
у (2)= -3*2²+6*2+2=-12+12+2=2
т. к. ветви параболы направлены вниз минимальное значение равно -∞
<span>Удачи! </span>
A^loga b=b
5^(3+log5 2)=5^3*5^log5 2=5^3*2=125*2=250
S''(t)=a(t)
s''(t)=(t-4t²+2t³)''=(-8t+6t²)'=-8+12t
a(t)=-8+12t
по условию а=16м/с²
12t-8=16, 12t=24. t=2 cек
s'(t)=v(t)
v(t)=(t-4t²+2t³)'=-8t+6t²
v(2)=-8*2+6*2²=-16+24=8
v(2)=8 м/с
Будет 0,2 или же 1/5 (одна пятая).