AD║BC как перпендикуляры к одной плоскости. Значит, точки А, В, С и D лежат в одной плоскости.
ΔВСО: ∠ВСО = 90°, по теореме Пифагора
ОВ = √(ВС² + ОС²) = √(4 + 2,25) = 2,5 см
ΔВСО подобен ΔADO по двум углам (углы при вершине О равны как вертикальные, ∠ВСО = ∠ADO = 90°), ⇒
АО/ОВ = AD/BC
AO = AD · OB / BC = 6 · 2,5 / 2 = 7,5 см
АВ = АО + ВО = 7,5 + 2,5 = 10 см
551
ад=св=5
ефс подобен афв
фс/фв =ес/ав
2/7=ес/8; ес=16/7
де=8-16/7=40/7
552
аво подобен сдо
во/до=ав/сд
4/10=ав/25
ав=10
Площадь равна произведению половине двух сторона на синус угла между ними.
S=0.5*ab*sin45=0.5*3*18√2*(1/√2)=27 см²
1) найти высоту, опущенную из ула β на сторону 3√3 используя площадь
зная высоту и сторону =2, определить sin угла дополнительного к α и найти сам α.
h=2S/a=( 2*4,5)/(3√3)=√3
sin(180-α)=√3/2, 180-α=60, α=120
2) по теореме косинусов a^2=b^2 + c^2 -2bc*cosα
α=√(27+4-12√3*cos150)=√49=7, cos150= - -cos (180-150)
3) по теореме синусов
3√3 /sinβ =2/sinγ, sinγ=(2√3)/(4*3√3)=1/6