Посмотрите,в чём сложность.
Функция упрощается,потому что в числителе трёхчлен,
который можно представить в формуле а(x-x1)(x-x2)(x-x3)(x-x4),
наверняка вы расписывали так трёхчлен второй степени.
Если вас смущает мой способ с дискриминантом - пожалуйста,решайте биквадратное уравнение(вводите t),лишь бы в формулу со скобками подставили корни.И да,a - коэф.при х^2,чаще его не бывает в ГИА.
Но если так будет - квадратичную функцию раскрывайте "фонтанчиком".
Иначе говоря,какая степень уравнения(большая),столько корней,т.е. скобок.
Дальше сокращаем.И ТА-ДАМ!Остаётся простая квадратичная функция.
Находим нужные нам точки:точки пересения с ох,с oy и самое главное - КООРДИНАТЫ ВЕРШИНЫ ПАРАБОЛЫ.Можно так и бросить,эксперту больше не надо.Но я строю табличку,чтобы график был более ровен и точен.
А что такое прямая y=m?
Прямая,параллельная оси ox(Т.Е.X-0,ЭТО БЫВШАЯ ЛИНЕЙНАЯ ФУНКЦИЯ,МЫ КАК БЫ НАПОМИНАЕМ ОБ Х)
А где будет одна общая точка с графиком?
Да как видно,она пройдёт через вершину параболы(забираем y).
Окончательный ответ:при m=-2.25.
Ответ:
сумма x и у меньше чем -2
вариант в
С²=9²+13²
с²=81+169
с²=250
с=5√10
(6x−10y)⋅(6x+10y)−36x²,
если x=3 и y=0,1
(6x−10y)⋅(6x+10y)−36x² =36x²-100y² -36x² = -100y²
Подстановка:
-100*(0,1)²= -100 * 0,01 = -1