Формула площади сферы S=4πR²
но дань что S=324см²
поэтому радиус сферы :
Sin30°=1:2 только дробью, а соs30˚=√3:2тоже дробью
sin60˚=√3:2дробью, а sin60°=1:2
1. Проводим высоту, получаем прямоугольный треугольник. Так как угол равен 30 градусам, то катет лежащий напротив него равен 1\2 гипотенузы, то бишь 30:2=15. Высота равна 15.
S=a*ha.
S=15*52=780.
2. Та же ситуация. Напротив угла в 30 градусов, лежит катет равный половине гипотенузы. То есть высота равна 5.
S=1\2(12+27)*5=97,5.
1)Дан прямоугольный треугольник АВС: угол С-прямой. Медиана прямоугольного треугольника равна радиусу описанной окружности, а гипотенуза - диаметр этой окружности. Поэтому гипотенуза АВ=26 см.
АВ+ВС+АС=60, тогда АВ+ВС=60-26=34.
Пусть АВ=х, тогда ВС=34-х
По теореме Пифагора х²+(34-х)²=26²
х²-34х+240=0,
D=b²-4ac=(-34)²-4·240=196=14²
x₁=(34+14)/2 х₂=(34-14)/2
х₁=24 х₂=10
Тогда другой катет соответственно 34-24=10 или 34-10=24
2) Пусть дан прямоугольный треугольник АВС, С- прямой угол. СЕ- медана, СЕ=25.
СК-высота, СК=24.
Гипотенуза прямоугольного треугольника-диаметр описанной окружности. Радиус описанной окружности равен медиане.
АВ=50.
Из прямоугольного треугольника СКЕ: КЕ²=СЕ²-СК²=25²-24²=49=7²
КЕ=7,
КА=7+25=32, тогда АС²=24²+32²=1600=40²
АС=40
ВК=50-32=18
ВС²=ВК²+СК²=18²+24²=900=30²
ВС=30
Ответ АС=40, ВС=30, АВ=50. Р=120 см.
<span>В тупоугольном треугольнике большая сторона равна 16 см, а высоты проведенные из обеих ее концов, отстоят от вершины тупого угла на 2 см и 3 см.</span>