Пирамида с равными ребра называется тетраэдер а в нем все углы равны 60
Диагонали ромба разбивают его на 4 равных прямоугольных треугольника, где катеты - это половины диагоналей d₁ и d₂, а гипотенуза - это сторона
ромба - а.
По теореме Пифагора
а² = (d₁/2) + (d₂/2)²
а² = 8² + 15² = 64 + 225 = 289
а = √289 = 17 - сторона ромба
2.
Sбоковая = Р * Н, где Р - периметр ромба, Н - высота призмы
Sбоковая = 4а * Н
Отсюда
Н = Sбоковая/4а
Н = 153/(4 * 17) = 153/68 = 2,25
Ответ: Н = 2,25
Так как ДМ перпендикуляр, то тр-ки ВМД и АМД - прямоугольные с общим катетом ДМ.
Пусть ВМ = х, тогда АМ = 14 - х
Выразим из тр-ка ВМД:
ДМ² = 13² - х²
Выразим из тр-ка АМД:
ДМ² = 15² - (14 - х)²
Приравняем:
169 - х² = 225 - (14 - х)²
169 - х² = 225 - 196 - х² + 28х
28х = 140
х = 5 см
ДМ = √(169 - 25) = 12 см
А)АС меньше длина . чем АВ
б)АС=СВ