<span>В ромбе ABCD углы ABD и BAC это острые углы одного из п</span>рямоугольных треугольников, полученных при пересечении диагоналей. Они равны: угол BAC =1/6 *90=15, угол ABD=5/6*90=75. так диагонали являются биссектрисами, то углы ромба равны 30 и 150.
Трапеция АВСД, АВ=15, СД=12, углы Си Д - прямые, ВС - верхнее основание, АД- нижнее основание.
Опустим из вершины В опустить высоту ВН на нижнее основание АД, она делит трапецию на прямоугольный треугольник АВН и прямоугольник НВСД (ВН=СД=12, ВС=НД)
Из прямоугольного ΔАВН найдем АН по т.Пифагора
АН=√АВ²-ВН²=√15²-12²=√81=9 - это и есть разница между основаниями ВС и АД
Ответ 9 см
Кароче вот ответ А(2),Б(1),В(3)
хех
Использовано определение угла между прямой и плоскостью, свойство диагоналей прямоугольника, определение синуса в прямоугольном треугольнике, табличное значение синуса угла в 30 градусов
Ответ:
13 см
Объяснение:
1) Рассмотрим АС и BD - это диагонали ромба, которые также являются его биссектрисами
угол В = угол АВО + угол ОВС и угол АВО = угол ОВС (т.к.BD - биссектриса)
угол АВО = 60 :2 = 30 градусов
2) Ромб является параллелограммом (по определению), а у параллелограмма диагонали точкой пересечения делятся пополам, отсюда следует что DO = OB и AO = OC
найдем АО = 6 : 2 = 3 см
найдем BO = 8 : 2 = 4 СМ
3) Знаем, что угол ОВА = 30 градусов
Катет, лежащий против угла равного 30 градусов, равен половине гипотенузе, отсюда
АВ - гипотенуза, АО - катет
АВ = 2 * АО = 2 *3 = 6 см
4) Периметр АОВ = 6 + 3 + 4 = 13 см