Заметим, что AB=AM+BM, CD=CP+DP, BC=BN+CN, AD=AQ+DQ.
По условию, AM=CP, BM=DP, тогда AB=CD. Также BN=DQ, CN=AQ, тогда BC=AD. Противоположные стороны четырехугольника ABCD попарно равны, тогда этот четырехугольник - параллелограмм.
В параллелограмме противоположные углы попарно равны. Рассмотрим треугольники AMQ и CNP. Они равны по 2 сторонам и углу между ними. Тогда MQ=NP. Аналогично, треугольники BMN и OPQ равны по 2 сторонам и углу между ними, тогда MN=PQ. В четырехугольнике MNPQ противоположные стороны попарно равны, тогда этот четырехугольник также является параллелограммом
Радиус вписанной в произвольный треугольник окружности равен отношению его площади к полупериметру.
r=S/<span>p <span>p</span>- полупериметр, у нас p=P/2</span>=4/2=2
острый-меньше 90 градусов
прямой-90 градусов
тупой- больше 90 градусов