ПИрамида АВСДА1В1С1Д1, в основаниях квадраты со сторонами АВ=4, А1В1=1, О1О=1 -высота пирамиды, из точки О1 проводим перпендикуляр О1К1 на С1Д1, О1К1=1/2А1Д1=0,5, из точки О препендикуляр ОК на СД, ОК=1/2АВ=4/2=2, рассматриваем прямоугольную трапецию ОО1К1К, проводим высотуК1Т на ОК, ОО1К1Т прямоугольник О1К1=ОТ=0,5, ТК=ОК-ОТ=2-0,5=1,5= 3/2, О1О=К1Т=1, треугольник К1ТК прямоугольный, К1К=корень(ТК в квадрате+К1Т в квадрате)=корень(9/4+1)=1/2*корень13, рассматриваем равнобедренную трапецию ДД1С1С площадь ее=(ДС+Д1С1)*К1К/2= (4+1)*1/2*корень13/2=5*корень13/4, площадь боковой повехности=5*корень13/4 *4=5*корень13, площадь АВСД=АД в квадрате=4*4=16, площадьА1В1С1Д1=А1Д1 в квадрате=1*1=1, поверхность полная=16+1=5*корень3=17+5*корень3
Треугольник АДВ прямоугольный, АВ=24, уголАВД=30, АД=1/2АВ=24/2=12, ВД-высота параллелограмма=корень(АВ в квадрате-АД в квадрате)=корень(576-144)=12*корень3,
площадьАВСД=АД*ВД=12*12*корень3=144*корень3
Дано
А и в - паралельны
У2=У1+34
т.к А и в - паралельны, то угол1= углу3
У1+У2=180
У1+У1+34=180
2 У1=146
У1=73
АВ паралельно Сд
У АВС=У ВСД=37
треугольник АВС:
УВ =37, УС = 90 УА=180-90-37=53
<span>Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
следует, что треугольники АВС и А</span>₁В₁С₁ - равны(по углам В и В₁, и сторонам прилежащим к этим углам АВ = А₁В₁ и ВС=В₁С₁)
<span>
Докажем что ВДС = В</span>₁Д₁С₁ равны по трем сторонам
нам известно, что АВС=А₁В₁С₁, значит ВД= В₁Д₁, а так же нам известно по условию, что ВС=В₁С₁
И если АД = А₁Д₁, то ДС=Д₁С, так как АС = А₁С₁
Таким образом мы доказали равенство треугольников ВДС и В₁Д₁С₁ по трем сторонам(ВД=В₁Д₁, СД=С₁Д₁ и ВС=В₁С₁)