V=S*h, S трапеции=(основание1+основание2) * высота/2=(9+15)*5/2=60
h = 10 - высота призмы
V= 60*10=600
Фигура АВСЕ- Это параллелограмм, у него противоположные стороны равны, его периметр равен 34
<span>а периметр все трапеции равен 34+21=55</span>
Треугольник АВС, О-центр вписан.окруж., М-точка касания с гипотенузой АС, СМ=1, АМ=2, Е-точка касания с катетом ВС и К-точка касания с катетом АВ, СЕ=СМ=1 (отрезки, касательных к окружности, проведенных из одной точки), так же АК=АМ=2, ОЕ=ОК= радиусу окружности. ОЕ перпендикулярно к ВС (отрезок, проведенный от центра окружности к точке касания, перпендикю к данной стороне), также ОК перпендик. к ВА. угол АВС-90градусов. ВКОЕ-квадрат, где сторона равна радиусу и обозначим за х, тогда ВА=2+х, ВС=х+1, Ас=2+1=3-гипотенуза
По теореме Пифагора
(х+1)^2+(х+2)^2=3^2
x^2+2x+1+x^2+4x+4=9
2x^2+6x-4=0 сократим на 2
х^2+3x-2=0
дискрим Д=9+8=17
Х1=(-3+корень из 17)/2 (корень из 17 приблиз равен 4,12)
х2=(-3-корень из17)/2 (отрицат. быть не может)
Ответ: радиус равен (-3+корень из 17)/2
Площадь прямоугольника равна произведению его сторон
<u>Док-во:</u>
Пусть у прямоугольника длины сторон а и b. Достроим его до квадрата со стороной a+b. Т. е. его площадь (квадрата) равна (a+b)^2. С другой стороны эта площадь равна сумме квадрата со стороной а, квадрата со сторой b и двух прямоугольников со сторонами а и b (которую мы и доказаываем). Обозначим ее S и приравняем площадь квадрате со стороной a+b к сумме площадей "маленьких прямоугольников и квадратов".
(a+b)^2=S+S+a^2+b^2
a^2+b^2+2ab=a^2+b^2+2S
2ab=2S
S=ab. <u>Доказано</u>
1. В прямоугольный треугольник вписана окружность (см. рис 1). Проведем радиусы AN и AM к катетам HP и HT соответственно. Как видно из рисунка, образовался квадрат HNAM, для которого отрезок AH является диагональю.
Диагональ квадрата найдем по формуле:
, где d = AH - диагональ квадрата, a - сторона квадрата, которая нам известна (7м).
Ответ: .
2. В окружность вписан равнобедренный треугольник с тупым углом (см рис. 2). Для нахождения радиуса описанной окружности воспользуемся формулой:
, где a, b и c - стороны треугольника, а S - площадь треугольника.
Найдем площадь треугольника:
;
Найдем сторону треугольника AC из ΔHCA (∠H = 90°):
AC = BC, т. к. треугольник равнобедренный.
Найдем радиус окружности:
Ответ: м.