Решение. Способ 1<span><span>f′</span>(x)=<span><span>(<span><span>4⋅x−7 / </span><span>x2</span></span>)</span>′</span>=
</span><span>=(<span><span><span><span>(4⋅x−7)</span>′</span>⋅<span>x2</span>−<span>(4⋅x−7)</span>⋅<span><span>(<span>x2</span>))</span>′ / </span></span><span><span>(<span>x2</span>)</span>2</span></span>=
</span><span>=<span><span><span><span>(4⋅x)</span>′</span>⋅<span>x2</span>−<span>(4⋅x−7)</span>⋅2⋅x</span><span><span>(<span>x2</span>)</span>2</span></span>=
</span><span>=<span><span>4⋅<span>x2</span>−<span>(4⋅x−7)</span>⋅2⋅x / </span><span><span>(<span>x2</span>)</span>2
</span></span></span>Ответ:<span>f′</span>(x)=<span><span>4⋅<span>x2</span>−<span>(4⋅x−7)</span>⋅2⋅x / </span><span><span>(<span>x2</span>)</span><span>2</span></span></span>
1) cos2*x=-1 2*x=П+2*П*k x=П/2+П*k, kЄZ
2) sin3*x=0 3*x=П*k x=(П/3)*k, kЄZ
3)√2*cosx=1 cosx=1/√2=√2/2 x=±П/4+2*П*n, nЄZ
4) 2*sin2*x=-1 sin2*x=-1/2 2*x=(-1)^n*7*П/6+П*n x=(-1)^n*7*П/12+(П/2)*n, nЄZ
5) tq3*x=1 3*x=П/4+П*n x=П/12+(П/3)*n, nЄZ
(t-7)^2-9t^2= (t-7-3t) (t-7+3t)= (-7-2t) (4t-7)= -(7+2t) (4t-7)
24-3-3-8=10 вроде так просто вырезаешь из прямоугольника треугольники