Докажем, что треугольники СОА И ВОМ-подобные.
1) Угол СОА=ВОМ (как вертикальные)
2) Угол АСО=ВМО (как накрест лежащие при секущей СМ и параллельных прямых СА и ВМ)
3) Угол САО=ОВМ (как накрест лежащие при секущей ВА и параллельных прямых СА и ВМ )
Следовательно, треугольники СОА И ВОМ-подобные
Теперь можем составить пропорцию и найти сторону ОМ отношению СА:ВМ=СО:ОМ, отсюда ОМ=ВМ*СО/СА=6*12/18=4 см, из этого СМ=4+12=16 см
Ответ: СМ=16 см
Попробуй понять по рисунку, как мы получили эти длины...ВК и СN - высоты трапеции...т.к. трапеция равнобедренная, то угол D=А=60 градусов...рассмотрим треугольник СND - прямоугольный...из предыдущего предложения следует, что угол NCD=30...против угла в 30 градусов лежит половина гипотенузы, значит, ND=1/2 CD=5...по следствию из теоремы Пифагора найдем CN: CN= ...теперь рассмотрим треугольник ANC - прямоугольный...по теореме Пифагора находим гипотенузу: AC=...находим периметр: ...надеюсь правильно
По одной из теорем о правильных вписанных многоугольниках: a=2*R*sin180/n, где n -количество сторон, у нас треугольник, т.е. a=2*R*sin 60, R=a/(2*sin60),
R=
Пусть АВ=х, тогда АD=(Х+4). Угол А = б0°. Угол В = 180°- 60°=120°.
По теореме косинусов АС² = АВ²+ВС²- 2*АВ*ВС*СоsВ. Соs120° = - 0,5.
АС² = Х²+(Х+4)² - 2*Х*(Х+4)*(0,5). 196 = Х²+Х²+8Х+16+Х²+4Х, или
ЗХ²+12Х-180 = 0. Решаем квадратное уравнение: Х²+4Х-60=0. Если b = 2k, можно применить формулу: х=(-k± √(k²-ас))/а. Тогда Х = 6. Отрицательное значение Х нас не устраивает.
Итак, АВ=6 см , АD=10 см. Тогда диагональ ВD найдем по той же теореме косинусов: ВD² = АВ²+ВС²- 2*АВ*ВС*СоsА. Соsб0°=0,5.
ВD²=36+100-60=76.
ВD=2√19≈8,72.
Sabcd = AB*AD*Sin60° = 6*10*(√3/2)=30√3≈51,96≈52 см².
Ответ: BD=2√19≈8,72. Sabcd=30√3≈51,96≈52 см².
Проекцией АМ на плоскость явл-ся прямая НМ. ∆АНМ -прямоугольный, по Пифагору НМ=√(АМ²-АН²)=√(17²-8²)=15