В скобочках - пояснение =)
Угол между двумя пересекающимися плоскостями (двугранный угол) измеряется градусной мерой линейного угла между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения.
Опустим на плоскость α перпендикуляр ВР (это и есть расстояние от стороны ВС до плоскости α, так как ВС параллельна AD - линии пересечения плоскостей α и АВСD) и проведем через этот перпендикуляр плоскость, перпендикулярную ребру двугранного угла между плоскостями (стороне АD - линии пересечения плоскостей АВСD и α).
Тогда искомый угол между плоскостями - это угол ВНР между высотой ромба ВН и отрезком НР, где точка Р - основание перпендикуляра ВР на плоскость.
В прямоугольном треугольнике АВН против угла <A=30° (противоположные углы ромба равны) лежит катет ВН, равный половине гипотенузы - стороны ромба АВ.
То есть ВН= 6.
В прямоугольном треугольнике ВРН синус угла <Н=ВР/ВН (отношению противолежащего катета к гипотенузе).
Sin(BHP)=3√3/6 = √3/2. Значит искомый угол между плоскостями равен arcsin(√3/2) = 60°.
Ответ: 60°.
1) Радиус описанной окружности ( для прямоугольного треугольника) равен половине гипотенузы. Вычислим гипотенузу с²=3²+4²=25: с=√25=5 см. R=5/2=2,5 см.
2) Диагонали ромба перпендикулярные и яыляются бисектрисами, которые делят ромб на 4 равных прямоугольных треугольника.
Пусть меньший из острых углов ромба равен х°, тогда больший угол будет равен (х+12)°.
Сумма углов ромба прилежащих к одной стороне равна 180°.
х+х+12=180; 2х=168°; х=168/2=84°. Один угол ромба 84°, другой угол равен 84+12=96°. Углы в треугольниках в 2 раза меньшие: 90°; 48° и 42°.
1)CD+AD+AC=48
(AD+CD)2=56
2)AD+CD=48-AC
AD+CD=56:2=28
3)48-AC=28
-AC=-20
AC=20 cм