АBK=KAB=40°
рассмотрим тр. КСВ, в нем К=С=(180-40)/2=70
рассмотрим CDB в нем угол С =70 D=90 тогда угол В=20
Треугольники cna и nbd равны, значит угол cdb равен углу acd , то есть 35
Проекция - это OB.
OB=sqrt(AB^2-AO^2)=sqrt(34^2-30^2)=2sqrt(17^2-15^2)=2sqrt(32*2)=16
Так как треугольник равносторонний, то все медианы являются и биссектрисами и высотами, тоесть медианы делят треугольник на 6 маелньких, каждый из которых прямоугольный (из-за высот) и один из его углом равен 30 градусам (из-за биссектрис, так как они делят углы основного треугольника пополам, а мы знаем, что все глы равностороннего трегольника по 60 градусов) отсюда ещё один угол, каждого из 6 треугольников ( а это и есть углы пересечения медиан) равен 180-90-30=60 градусов
Ответ:
52π (куб. ед.)
Объяснение:
Основания трапеции являются диаметрами оснований конуса. Боковая сторона - образующая конуса.
V=·π·h·(r₁²+r₁·r₂+r₂²) где
h-высота конуса,
r₁=4÷2=2-радиус верхнего основания,
r₂=10÷2=5-радиус нижнего основания.
Найдем высоту конуса, как катет в прямоугольном треугольнике, образованном гипотенузой - боковой стороной и катетом, равным половине разницы диаметров оснований:
h=√(5²-((10-4)/2)²)=√(25-9)=4
Тогда V=·π·4·(4+10+25)=52π (куб. ед.)