ΔAC1В-прямоугольный,С1B=√BC²+CC1=√25+144=√169=13
tg<AC1B=AB/BC1=4/13
произведению полусуммы оснований на высоту.
Заданный многогранник - это треугольная пирамида с основанием АА1С и высотой Н, которая равна высоте равностороннего треугольника А1В1С1, плоскость которого перпендикулярна плоскости основания.
Находим сторону а основания призмы из формулы S = a²√3/4.
a = √(4S/√3) = √(4*9/√3) = 6/(3^(1/4)) = 2√(3*√3).
Высота Н = а*cos 30° = (2√(3*√3))*(√3/2) = 3√3.
Площадь АА1С равна: So = (1/2)a*4 = (1/2)*(2√(3*√3))*4 = 4√(3*√3).
Ответ: V = (1/3)SoH = (1/3)*(4√(3*√3))*(3√3) = 12√3 куб.ед.