Чертим угол с вершиной О.
<span>От О, как из центра, отмечаем циркулем на сторонах угла равные отрезки ОА и ОВ. Из А и В как из центров с помощью циркуля строим две полуокружности (можно тем же радиусом, можно поменьше). Точки пересечения окружностей и О соединяем лучом ОС, который делит данный угол пополам и является для него биссектрисой. Для угла АОЕ повторяем эту процедуру, применив в качестве центров полуокружностей точки А и С. <span>Точки пересечения и О соединяем прямой ОМ, которая, являясь биссектрисой половины угла АОВ, отделила от него <em>угол АОМ</em>, равный половине угла АОС и <em>равный четверти угла АОВ</em></span></span>
через две точки можно провести только одну площину
1 задача
. О это точка пересечения СD и AE. Докажем что треугольник AOD=треугольнику CO, тем самым докажем что AD=CE. Треугольники будут равны по 2 признаку равенства: 1) угол DAO=углу ECO,так как треугольник ABC равнобедренный (углы при основании равны)и по условию угол ACD=углуCAE.2) угол DOA=углуEOC, как вертикальные 3) AO=CO, как равнобедренный треугольник. А значит AD=CE
Подобие треугольников
a/a1=b/b1
все треугольники равнобедренные, рассмотрим 1 и 3 треугольник ac/a2c2=ab/a2b2, т. е.
12/24=10/20
и рассмотрим 1 и 2 треугольник
10/6 не равно 12/5.
Значит: 1 и 3 треугольники подобны