<span>Пусть дана равнобедренная трапеция ABCD, угол АВС=120 градусов. Проведем высоту ВК, то угол АВК=30 градусов, АК=(28-16):2=6 см. По свойству угла в 30 градусов: АВ=2*АК=16 см</span>
По первому признаку должны быть равны 2 стороны и угол между ними. Значит должны быть ровны стороны KO и PT
Открываем учебник: "Каждая координата вектора равна разности координат конца и начала вектора".
1-3 =-2
0-(-4) = 4
11-7 = 4. Ответ: АВ={-2;4;4}.
Дано:
АВСЕ — прямоугольная трапеция,
ВС = 6 сантиметров,
АЕ = 10 сантиметров,
угол Е = 45 градусов.
Найти боковую сторону АВ — ?
Решение:
1) Рассмотрим прямоугольную трапецию АВСЕ. Проведем высоту СН. Получим прямоугольник АВСО, тогда ВС = АО = 6 сантиметров, АВ = СО.
2) Рассмотрим прямоугольный треугольник СОЕ. Сторона ОЕ = АЕ - АО = 10 - 6 = 4 (сантиметров). Мы знаем, что сумма градусных мер углов любого треугольника равна 180 градусам.
Тогда угол ОСЕ + угол СЕО + угол ЕОС = 180;
угол ОСЕ = 180 - 90 - 45;
угол ОСЕ = 45 градусов.
Следовательно треугольник СОЕ равнобедренный, то СО = ОЕ = АВ = 4 сантиметров.
Ответ: 4 сантиметров.