Я получил замечание, за элементарное решение этой задачи:)))
Выглядело оно так
"Вообще-то косинус половины центрального угла этой хорды равен 1/2"
или как-то похоже. Я бы вставил точный текст, но тут нельзя :))
Поясню решение.
Центральный угол хорды вместе с ней образует равнобедренный треугольник, боковые стороны равны радиусу. Опушенная из центра окружности на хорду высота (она же медиана и биссектриса) равна половине радиуса. Это задано по условию. Следовательно, угол между этой высотой и боковой стороной (радиусом) имеет косинус, равный 1/2, то есть равен 60 градусам. Поэтому центральный угол, соответствующий хорде, равен 120 градусам. То есть хорда отсекает треть окружности. Собственно, задача уже решена, поскольку сторона равностороннего треугольника, вписанного в эту окружность, тоже отсекает от окружности ровно треть.
Всё это пояснение совершенно эквивалентно забаненой фразе. Я сожалею о своей ошибке, глубоко раскаиваюсь и обещаю впредь не совершать ничего подобного :))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Диагональ прямоугольника = диаметр окружности.
Диагональ d - гипотенуза треугольника с катетами 5 и 6
d = V(5^2+6^2)=V61
Радиус 0,5V61
Квадрат радиуса 0,25*61=15,25
длина окружности С
C=2*V61
Площадь S
S=п*15,25
===================
п-ПИ
V - корень
Диагональ трапеции делит ее на 2 треугольника, в которых отрезки средней линии будут средними линиями этих треугольников
Так как угол 45 градусов, сторона равна корень из 8, а площадь корень из восьми на два корней из вости = 8 кв см площадь
Окружность вписанная.
<em>Центром вписанной в треугольник окружности является точка пересечения биссектрис углов треугольника</em>.
Если точка пересечения биссектрис и точка пересечения медиан совпадают, то медианы треугольника являются и его биссектрисами.
<u>Следовательно, данный треугольник - равносторонний. </u>
Медианы треугольника пересекаются в одной точке. <em>Точка пересечения медиан делит их в отношении 2:1, считая от вершины.</em><span><em> </em>
Прямая , параллельная стороне треугольника и равная 2 см, делит его на подобные треугольники с коэффициентом подобия </span>3:2 (вся медиана - 3 части, от вершины до точки пересечения медиан- 2 части, следовательно, и k=3:2)
Тогда таким же будет и отношение сторон всего треугольника к сторонам отсекаемого, т.е. к длине отрезка, на котором лежит центр окружности.
Обозначим сторону треугольника а.
а:2=3:2
2а=6
а=3 см
Периметр - сумма длин всех трех сторон треугольника.
Р=3•3=9 cм
----------
Если не прямая, на которой лежит центр окружности, равна 2 см, а сторона треугольника, тогда, естественно, периметр равен 6 см. Главное - определить, что треугольник равносторонний.