Два случая выходит:
1) x + y >0 , т е x > -y
тогда x+y>=2
2) x +y <0, т е x < -y
и -x-y>=2
вот и всё. график вот такой
<u>№1</u>
| |x| -4| =8
1) |x| - 4 =8
|x| = 8+4
|x| = 12
x₁ = -12; x₂= 12
2) |x| - 4 = - 8
|x| = - 8+4
|x| = - 4 < 0, решений нет, т.к. модуль числа не может быть отрицательным.
Ответ: {- 12; 12}
<u>№2</u>
|2|x|-3|+4=12
|2|x|-3| = 12-4
|2|x|-3| = 8
1) 2|x|-3 = - 8
2|x| = - 8 + 3
2|x| = - 5
|x| = -5 : 2
|x| = -2,5< 0, решений нет, т.к. модуль числа не может быть отрицательным.
2) 2|x|-3 = 8
2|x| = 8 + 3
2|x| = 11
|x| = 11 : 2
|x| = 5,5
x₁ = -5,5; x₂ = 5,5
Ответ: {- 5,5; 5,5}
<u>№3</u>
-4|5x-3| = -8
|5x-3| = -8 : (-4)
|5x-3| = 2
1) 5x-3 = - 2
5x = -2 + 3
5x = 1
x = 1 : 5
x₁ = 0,2
2) 5x-3 = 2
5x = 2 + 3
5x = 5
x = 5 : 5
x₂ = 1
Ответ: {0,2; 1}
<u>№4</u>
-2||x|+5|=24
||x|+5| = 24 : (-2)
||x|+5| = - 12 < 0, решений нет, т.к. модуль числа не может быть отрицательным.
Ответ: x∈{∅}
Ответ: 435.<span>(всего таких пар 30*29/2=435)</span>
12x-3y=5 - домножим первое уравнение на 2
<span>6y-24x=-10</span>
24x-6y=10
6y-24x=-10
замечаем, что это одно и то же уравнение, т.е. система имеет бесконечное количество решений