1)1,8-3/5=18/10-3/5=12/10=1 2/10=1 1/5
Задание № 2:
При каком значении параметра a уравнение |x^2−2x−3|=a имеет
три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
<span>у вершины = 1-2-3=-4</span>
после применения модуля график
отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и
х=-1)
при 0<а<4 - 4 корня (2
от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от
исходной параболы, 1 от вершины х=1)
при а>4 - 2 корня (от
исходной параболы)
ответ: 4
Выражение имеет два корня 2 и р.
Т. к. неравенство не строгое, 2 и р не включаются в решение.
Расмотрим первую ситуацию когда р>2. Методом перебора перечисляем три решения которые больше 2: 3, 4, 5, значит р=6.
Второй случай р<2, тогда решения:1, 0, -1, р=-2.
<u>Ответ: -2, 6</u>.
Возводишь все в квадрат и решаешь
7х+1-2x+7=3x+18
x=5