Ответ:
Тригонометрическим уравнением называется уравнение, содержащее переменную под знаком тригонометрических функций.
Уравнения вида sin x = a; cos x = a; tg x = a; ctg x = a, где x - переменная, a∈R, называются простейшими тригонометрическими уравнениями.
Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.
Пример.
а) sin(3x)= √3/2
Решение:
Обозначим 3x=t, тогда наше уравнение перепишем в виде:
sin(t)=1/2.
Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.
Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.
Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,
тогда x= ((-1)^n)×π/9+ πn/3
Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.
См фото
Графики
y = x^2
y = x + 2
Точки пересечения ( - 1; 1) и (2; 4)
==================================
<span>x^2y^2-xy=12 ;
x+y=2</span>
xy=t
t2-t-12=0
t12=(1+-корень(1+48))/2=(1+-7)/2 = 4 -3
xy=4
x+y=2
x=2-y
y(2-y)=4
y2-2y+4=0
решений нет в действительных числах дискриминант отрицательный
xy=-3
x+y=2
x=2-y
y(2-y)=-3
y2-2y-3=0
y=-1
x=3
y=3
x=-1
1)вариант решения:
tg(2π-x)=tg(-x)=-tg(x);
2)вариант решения:
tg(2π-x)=(tg2π-tgx)/(1+tg2π·tgx);⇒tg2π=0;
tg(2π-x)=-tgx/1=-tgx;