Построим равнобедренную трапецию АВСD, основания ВС║АD. По условию ВС=17 см, АD=33 см. АС- биссектриса ∠ВАD. ΔАВС - равнобедренный, ∠САD=∠АСВ=∠ВАС. АВ=ВС=17 см.
С точек В и С опустим перпендикуляры ВК и СМ на основание АD.
ΔАВК - прямоугольный. АК= (АD-ВС)/2=(33-17)/2=16/8 см. ВК=√289-64=
=√225=15 см.
Вычисляем площадь трапеции S= (17+33)/2 ·15=25·15=375 см²
S=a·b·sin a — это формула для нахождения площади параллелограмма.
Самый простой путь - найти синус угла между сторонами, равными 5 и 8, через площадь треугольника. sinγ=2S/ab.
дальше находишь cos=√(1-sin²γ) (<u>то, что треугольник остроугольный и углы у него острые дает нам положительный косинус</u> - это очень важно)
дальше по теореме косинусов находишь третью сторону c=√(a²+b²-2abcosγ)
тебе осталось лишь вычислять)
Анастасия Булыгина я понимая географию