-1<=log3(x)<=3
log3(1/3)<=log3(x)<=log3(3)
1/3<=x<=3
<span>х(x+2)-(x+3)(x+1)=2x+3,
х</span>²+2х-(х²+х+3х+3)=2х+3,
х²+2х-(х²+4х+3)=2х+3,
х²-х²-4х-3х=3,
-4х-3=3,
-4х=3+3,
-4х=6,
х=6:(-4),
х=-1,5.
Ответ: -1,5.
Вот решение) Там где я делила дроби, это сокращение.
X^2+10x+25=0
(x+5)^2=0
x+5=0
x=-5
Докажем, что все члены последовательности лежат в пределах [3/2;2].
x_1 там лежит; пусть для некоторого n выполнено 3/2≤x_n≤2;
тогда 1/2≤1/x_n≤2/3⇒3/2≤1+(1/x_n)≤5/3<2⇒3/2≤x_(n+1)≤2; тем самым методом математической индукции утверждение доказано для всех членов последовательности.
Далее, оценим разность между соседними членами последовательности:
|x_(n+1) - x_n|=|1+(1/x_n) - 1 - (1/x_(n-1))|=|x_(n-1) - x_n|/(x_n·x_(n-1))≤
|x_(n-1) - x_n|/(3/2)^2
Отсюда следует сходимость последовательности.
Предел A последовательности теперь ищется элементарно. Для этого нужно перейти к пределу в равенстве x_(n+1)=1+(1/x_n):
A=1+(1/A); A^2-A-1=0; A=(1+√5)/2 (отрицательный корень отбросили, поскольку A>0
[2A]=[1+√5]=3
Ответ: 3