Находишь периметр PQM , а т.к он равен EFL , то периметры тоже равны.
Нарисуем равнобедренный треугольник АВС.
Высоты треугольника пересекаются в одной точке (см. теорему).
В равнобедренном треугольнике расстояние от вершин основания до точки пересечения высот равно, поэтому для решения достаточно двух высот.
Проведем 2 высоты треугольника АВС:
одну к основанию -ВМ, вторую к боковой стороне - АМ
Точку пересечения высот обозначим О.
Рассмотрим треугольники АВН и АНС.
АН - общий катет этих прямоугольных
треугольников.
Сторона ВС делится высотой на отрезки ВН=х и НС=5-х
Составим по формуле Пифагора выражение для высоты АН из этих двух треугольников и приравняем их.
АН²= АВ²-ВН²
АН²=АС²-(5-х)²
5²-х²=6²-(5-х)²
25-х²=36-25+10х-х²
10х=50-3610х=14х=1,4
Из тр-ка АНС найдем НС
НС=5-1,4=3,6
Чтобы найти АО, нужно знать длину АН
АН²=АС²-СН²=36-12,96
АН=4,8
Треугольники ВОН и АОМ подобны - в них равны острые вертикальные углы.
Для прямоугольного треугольника этого достаточно, так как остальные 2 угла тоже равны.
По этой же причине подобны АНС и ВОН ( равны углы НАС и ОВН в прямоугольных треугольниках)
ВН:АН=ВО:АС
1,4:4,8=ВО:6
4,8 ВО=8,4
ВО=1,75
ОН²=1,75²-1,4²
ОН²=3,0625-1,96
ОН=1,05
АО=АН-ОН
АО=4,8-1,05=3,75 см
<u>Ответ: </u>Расстояние от вершины В до точки пересечения высот равно 1,75 см
От вершин А и С оно одинаково (треугольник равнобедренный) и равно3,75 см<span>
</span>
Против угла в 30 градусов лежит катет равный половине гипотенузы. Т.е. один катет равен 5 см, а второй находим по теореме Пифагора: √(100-25)=√75=5√3 см
Проведем высоту в этом равнобедренном треугольнике, назовем ее ВН.
Тогда у нас получилось 2 прямоугольных треугольника АВН и ВНС
ВН является не только высотой в треуг.АВС ,но и медианой, которая делит сторону АС пополам.
АВ=ВС=10 см, основание треугольника АС=12, тогда АН=НС=12/2=6 см
В прямоугольном треугольнике АВН по теореме Пифагора найдем ВН
АВ²=ВН²+АН²
10²=ВН²+6²
100=ВН²+36
ВН²=100-36=64
ВН=√64=8
S= 1/2 *8* 12=48 см²
ОТВЕТ площадь нашего искомого треугольника 48 см²