В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Доказательство:
Пусть дан прямоугольный треугольник с катетами а и b и гипотенузой с.
Составим из четырех таких треугольников квадрат со стороной а + b как на рисунке.
Внутри получим квадрат со стороной с.
Площадь большого квадрата равна сумме площадей составляющих его фигур:
S = 4·SΔ + c² = 4 · ab/2 + c²
или
S = (a + b)²
Приравняем правые части:
2ab + c² = (a + b)²
2ab + c² = a² + b² + 2ab
c² = a² + b²
Что и требовалось доказать.
Берем линейку, строим основание.
берем циркуль, из двух концов основания проводим дуги (радиус - длина боковой стороны). Точка их пересечения - вершина треугольника.
Ответ:
Тригонометрические тождества.