1. Ответ: 72 см. По теореме Пифагора находим второй катет первого треугольника, он будет равен 12 см. Рассмотрим подобие этих двух треугольников, и из подобия найдем один катет второго треугольника, он будет равен 24. Второй катет второго треугольника находится снова по теореме Пифагора, он будет равен 18 см. Итак, найдем периметр второго треугольника: 18+24+30=72 (см)
1)sinA=BC/AB;⇒BC/AB=√15/4;
BC=√15·x;AC=4x;
cosA=AC/AB;
AC=√(AB²-BC²)=√16x²-15x²=√x²=x;
cosA=x/4x=1/4;
или сosA=√(1-sin²A)=√(1-15/16)=√(1/16)=1/4;
2)cosA=2√6/5;⇒SinA=√(1-cos²A)=√(1-24/25)=√(1/25)=1/5;
3)cosA=AC/AB=3/5;⇒AC=3x;AB=5x;
CosB=BC/AB;
BC=√(AB²-AC²)=√(25x²-9x²)=√16x²=4x;
CosB=4x/5x=4/5;
Уг.1+уг.2=180
уг.1=5/4×уг2
подставим
5/4×уг2+уг2=180
уг2=80
уг 1=100
г1=уг4
уг2=уг3
как накрест лежашие
четырехугольник можно вписать в окружность, если сумма противоположных угол равна 180
пусть углы 1и2 при большем основании, тогда 3и4 при меньшем. Угол 1+4=180
угол 2+4=180(т.к. в трапецие основания параллельны, и эти углы соответственный)
тогда получаетчя, что угол 1=2, что и надо было доказать
треугольники мнк и мрк равны по 1 признаку т.к. мн=кр и угол кнм= углу мрк и по общей стороне мк