Если две стороны образуют прямой угол(90 градусов), то это катеты, а прямая, которая их связывает будет гипотенузой)
Площадь сферы S = 4*pi*R²
где R -- радиус шара
параллельные сечения представляют из себя окружности с радиусами
r1 = √40
r2 = √4
из получившихся прямоугольных треугольников можно записать:
R² = (r1)² + x²
R² = (r2)² + (x+9)²
---------------------------------
40 + x² = 4 + x² + 18x + 81
18x = 40-85 = -45
-----------------------где-то ошибка в данных)))
если расстояние от центра шара до бО'льшего сечения обозначить (х) --- оно
ведь будет ближе к центру, а расстояние от центра шара до меньшего сечения обозначить (у) --- оно будет дальше от центра
у > x
можно записать (r1)² + x² = R² = (r2)² + y²
(r1)² - (r2)² = y² - x²
40 - 4 = 36 = (y - x)(y + x)
и по условию расстояние между сечениями 9 = у - х
а т.к. произведение = 36, то на сумму (х+у) остается 4
сумма двух (положительных !!) чисел МЕНЬШЕ их разности)))
противоречие)))
а с точки зрения чертежа --- с таким расстоянием между сечениями около них окружность не опишется...
эллипс получится)))
или сечения по разные стороны от центра)))
ход решения, думаю, уже очевиден...
найти х --- вычислить R --- подставить его в формулу для S)))
Угол KBM=56градуса
уголBMK=62градуса
уголMKB=62градуса
Расстояние от точки Р до НК равно длине перпендикуляра РС к НК. По теореме о трёх перпендикулярах проекцией РС на плоскость треугольника МНК будет высота МС треугольника МНК. По теореме Пифагора НК=корень из(МН квадрат+МК квадрат)=корень из ( (5 корней из 2) в квадрате+(5 корней из 2 ) в квадрате))= корень из (25*2+ 25*2)=10. Поскольку МН=МК. В равнобедренном треугольнике высота проведённая к основанию является одновременно медианой и биссектрисой. Следовательно НС=НК/2=10/2=5. Угол НМС=уголНМК/2=90/2=45. Тогда и уголСНМ=45. Значит треугольник НМС равнобедренный. Тогда МС=НС=5. Отсюда РМ=корень из (РС квадрат-МС квадрат)=корень из(169-25)=12.
Периметр = 24 = а * 3
Т. Е сторона равна 8
А средняя линия будет равна половине стороны, то есть 4)