Корень уравнения это икс.
Найдем его значение так:
Вначале возведем в куб число 3, так мы избавились от корня:
Находим икс:
x= 27-2=25
x=25
[(x+3) +18/(x-3)] * 2(x^2-6x+9) / (x^2+9) =
[(x+3)(x-3) +18] / (x-3) * 2(x-3)^2 / (x^2+9) =
<span>(x^2 - 9 +18) / (x-3) * 2(x-3)^2 / (x^2+9) = 2(x-3).</span>
2tgx - ctgx + 1 = 0
2*
Умножаем на sinxcosx, + ОДЗ:
sinxcosx ≠ 0
sinx ≠ 0
x ≠ pik
cosx ≠ 0
x ≠ pi/2 + pik
Возвращаемся к уравнению
2sin²x - cos²x + sinxcosx = 0
2sin²x + sinxcosx - cos²x= 0
Делим все это на cos²x
2tg²x + tgx - 1 = 0
Пусть tgx = t
2t² + t - 1 = 0
D = 1-4*2*(-1) = 9. √9 = 3
t1 =
t2 =
Возврат к замене:
tgx =
x = arсtg(
) + pik
tgx = -1
x = -
+ pik
sin3x +
= 0
Делим все это на cos3x
tg3x +
= 0
tg3x = -
3x = -
Делим все на 3
x = -
Будем решать через обычный дискриминант, после чего я покажу тебе ещё одна формулу, которая называется "дискриминант-1". Итак, начнём:
1) Чтобы разложить трёхчлен на множители, приравняем его к нулю:
-4x²+3x+1=0
2) Вспомним формулу дискриминанта. Для этого сначала обозначим коэффициенты при членах выражения буквами a, b и c соответственно. D=b²-4ac
Подставим известные нам коэффициенты:
D=9+16=25
3) Ура! Получился удобный дискриминант. Почему удобный? Потому что потом придётся извлекать из него корень, что мы сейчас и сделаем. Найдём сначала одно значение х:
x=(-b+√D)/2a
x=(-3+5)/2=2/2=1
Теперь второе:
x=(-b-√D)/2a (вычисли сама, ответ найдёшь ниже)
4) Мы получили два числа - 1 и -4. Что с ними теперь делать? Это нужно запомнить - вот эти самые два числа нужно подставить в выражение (х-.)(х-,)=0. Получаем (х+1)(х-4). Это и есть нужное выражение (проверь, если сомневаешься)
А теперь к дискриминанту-1. Эти формулы хорошо помогут тогда, когда коэффициент b чётный.
Дискриминант в этом случае вычисляется так: D=k²-ac (k=b/2)
Проще, не так ли? Смотрим, как вычислять корни:
x₁=(-k+√D)/a
x₂=(-k-√D)/a
Попробуй решить эту задачу через дискриминант-1 и сравни ответ.