Смотря как округлять. А точнее до чего. Есть несколько вариантов:
0
0,4
0,36
Рисунок не соответствует условию. Если подставить координаты точки В(3; 7) в уравнение высоты 2х - у + 1 = , то получим тождество:
2*3 - 7 + 1 = 0. Значит, точка В лежит на прямой 2х - у + 1, а прямая АВ - это катет прямоугольного треугольника.
Уравнение АВ: у = 2х + 1.
Уравнение ВС: у = -1/( 2)х + в. Поставим В(3; 7). 7 = (-1/2)*3 + в.
Отсюда в = 7 + (3/2) = 17/2. Тогда ВС: (-1/2)х + (17/2).
Находим координаты точки М (основание медианы) как точка пересечение ВС и АМ: (-1/2)х + (17/2) = (3/4)х + (9/4). (5/4)х = 25/4.
х (М) = 25/5 = 5. у(М) = (3/4)*5 + (9/4) = 24/4 = 6.
Точка М: (5; 6).
Теперь находим координаты точки С как симметричной точке В относительно точки М.
х(С) = 2х(М) - х(В) = 10 - 3 = 7.
у(С) - 2у(М) - у(В) = 12 -7 = 5.
Ответ: С(7; 5).
- 2sin²x - √3sin2x =0;
- 2sin²x - √3*2sinx *cosx=0;
-2sinx(sinx -√3cosx) = 0 ;
[ sinx = 0 ; sinx -√3cosx =0 ;
a) sinx = 0 ⇒ x = π*k , k∈Z ;.
b) sinx -√3cosx =0 ⇔tqx =√3 ⇒x =π/3 + π*k , k∈Z.
ответ : π*k ; π/3 + π*k , k∈Z.
********************************************
2sin²x = 1 +cosx ;
- (1 -2sin²x) = cosx ;
- cos2x = cosx ;
cos2x +cosx =0 ;
* * * * * cosα +cosβ =2cos(α+β)/2* cos(α - β)/2 * * * * *
2cos3x/2*cosx/2 =0 ;
cos3x/2 = 0 ⇒3x/2 =π/2+π*k , k∈Z⇔x = π/3+2π/3*k , k∈Z ;
cosx/2 =0⇒x/2 =π/2+π*k , k∈Z⇔x = π+2π*k ,k∈Z.
ответ : π/3+2π/3*k ; π+2π*k , k∈Z.