вот, пока сделала только первый вариант
Из соотношения АО=0,5АС можно сделать вывод то что это равнобедренный или равносторонний треугольник.
Тогда АВ=ВС=4
ABCD трапеция,основание ВС=а,основание AD=b
O-точка пересечения диагоналей,O∈PK,PK||BC||AD
Из подобия треугольников AOD и BOC следует, что АO/OС = AD/BC = b/a.
Из подобия треугольников AOР и ACB следует, что АO/AС = PO/BC = b/(a + b).
Отсюда PO = BC · b / (a + b) = ab/(a + b).
Из подобия треугольников DOK и DBC, следует, что OK = ab/(a + b).
<span>
Отсюда PO = OK и PK = 2ab/(a + b).</span>
Конечно почерк не идеальный, но если будет что-то непонятно - спроси. Те углы, которыми я пользовался я пометил циферками.
Диагонали трапеции делят ее на 4 треугольника, причем треугольники, примыкающие к боковым сторонам, равновелики, а к основаниям - подобны. т.к. соответственные углы в них - равные накрестлежащие при параллельных основаниях и секущих- диагоналях.
Итак, треугольники ВСЕ и АЕD - подобны.
Пусть ВЕ=х, тогда ЕD= 25-x.
Из подобия треугольников:
ВС:АD=BE:ED
8:12=x:(25-х)
12х=200-8х
20х=200
х=10
ВЕ=10 см