Пусть АВ=4х, ВС=АВ=4х, АС=3х
Найдем коэффициент пропорциональности х из уравнения:
4х + 4х + 3х = 33
11х = 33
х=3.
АВ=3*4=12; ВС=12; АС=3*3=9.
Ответ: 12, 12, 9 единиц измерения.
В паралеллограме противоположные стороны и углы равны, поэтому АВ = ВС = СД = ДА = 18.
Проводим отрезок ВД.
Треугольник АВС - равнобедренный с основанием АС, значит угол САВ равен 30.
Угол СВА = 180 - 30*2 = 120
Отсюда угол СДА тоже = 120
Угол ВСД = (360 - 120*2)/2 = 60 (сумма внутренних углов четырёхугольника = 360.
Треугольник ВСД равнобедренный, более того, так как угол ВСД 60°, он равносторонний, значит ВД = 18.
Площадь АВСД = сумме площадей треугольника ВСД и ВДА (которые равны), = (18*(18*cos30)/2) * 2 = 280.6
Трапеция АВСД, АВ=2корень15, АД = 8, ВС = 5. Найти АС
Из теоремы косинусов:
- для треуг-ка АВС: АС^2=АВ^2+BC^2-2*АВ*ВС*cosB (1)
- для треуг-ка АСД то же самое, но учитываем, что:
СД=АВ, уголД=180-уголВ, cos(180-B)=-cosB
Получаем АС^2=АВ^2+АД^2+2*АВ*АД*cosB (2)
Приравниваем правые части уравнений (1) и (2), получаем, что cosB=-3/(4*корень из15)
Подставим в (1). Тогда АС^2=100, АС=10