Угол три должен быть равен углу 5, так как они накрест лежащие. А теорема говорит нам, что если накрест лежащие углы равны, прямые параллельны
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
<span>Ответ. 11,25 √23 см².</span>
Дано: ΔABC, ∠A = 2∠B, ∠C = ∠A + 10°
Найти: ∠A - ?, ∠B - ?, ∠C - ?
Решение:
∠A + ∠B + ∠C = 180 (сумма углов треугольника равна 180°)
∠A заменим на 2∠B из равенства ∠A = 2∠B;
∠C = ∠A + 10°, здесь ∠A тоже заменим на 2∠B
Получаем:
2∠B + ∠B + 2∠B + 10 = 180
5∠B + 10 = 180
5∠B = 180 - 10
5∠B = 170
∠B = 170/5 = 34°
∠A = 2∠B = 34 * 2 = 68°
∠C = ∠A + 10 = 68 + 10 = 78°
Ответ: ∠B = 34°, ∠A = 68°, ∠C = 78°
S=5×6,2
S=10x
10x=5×6,2
10x=31
x=3,1
Ответ:3,1
Медиа́на треуго́льника ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.