Пусть ABCD - равнобедренная трапеция, E, F, K, L - середины сторон трапеции, тогда EK=15 см - средняя линия трапеции, FL=6 см - высота и O=FL∩EK - точка пересечения диагоналей четырехугольника EFKL.
Так как диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то полученный четырехугольник - параллелограмм (по признаку параллелограмма). А так как ЕК║AD и EK║BC (как средняя линия) и высота FL⊥AD и FL⊥BC, то FL⊥EK, значит диагонали параллелограмма пересекаются под прямым углом, поэтому параллелограмм EFKL - ромб (признак ромба).
Площадь ромба можно найти по формуле:
S=1/2*d1*d2, где d1 и d2 - диагонали ромба.
S=1/2*6*15=45 (см²).
Ответ: 45 см².
Если бы это была дуга то попробуй
Ответ №1:
Если угол COA= 130, то сумма углов АОВ и ВОС равна 360-130=230.
Пусть х-коэф. пропорциональности, тогда угол АОВ = 11х, а угол ВОС=12х. Имеем: 11х+12х+230, 23х=230, х=10. Тогда угол АОВ = 11·10=110, а угол ВОС=12·10=120.
Углы BCA и BAC - вписанные углы, им соответсующие центральные углы АОВ и ВОС. По свойству углов вписанных в окружность, вписанный угол равен половине соответсвующего ему центрального угла. Таким образом,
угол BCA=АОВ=110:2=55 и угол BAC=ВОС=120:2=60.
5.
Рассмотрим ΔNPL - он равносторонний, так как NP=PL=LN ( по условию ). Значит ∠LNP=∠NPL=∠PLN= 180° / 3 = 60°.
PNML - параллелограмм, ∠P=∠M ( противоположные углы параллелограмма равны), ∠N=∠L, так как ∠P= 60°, то и ∠M= 60°.
Найдём ∠N и ∠L
∠N=∠L= 360° - ( 60° + 60° ) / 2 = 120°
Ответ: ∠P=∠M= 60°; ∠N=∠L= 120°
Ответ
1)180
Сумма углов параллелограмма равна 360 градусам, тогда угол B равен 90 градусам угол CAB=90/2, угол DCA=90/2, следовательно 90+45+45=180
<em><ABE = 70 (по условию)
<BEA = 50°(по условию)</em>
<em><u><A = 180 - <ABE - <BEA = 180 - 70 - 50 = 60°</u> (сумма углов треугольника равна 180°)</em>
<em><u><ABC = 180 - <A = 180 - 60 = 120</u> (сумма углов, прилегающих к боковой стороне трапеции стороне равна 180°)</em>
<em> BECD - параллелограмм </em>
<em><BED = 180 - <BEA = 180 - 50 = 130° (<AEB и <BED - смежные)</em>
<em><u><C = <BED = 130°</u> (у параллелограмма противоположные углы попарно равны)</em>
<em><u><D = 180 - <C = 180 - 130 = 50°</u>(сумма углов, прилегающих к боковой стороне трапеции стороне равна 180°)</em>