Точка Е - середина основания ВС, точка К - середина оскования АД. Значит на отрезке ЕК лежит точка М.
Для начала рассмотрим две трапеции, на которые отрезок ЕК поделил трапецию АВСД.
Трапеции АВЕК и КЕСД равновеликие, поскольку у них равны верхние и нижние основания и высота (так как Е и К середины оснований).
Известно, что медиана делит треугольник на два равновеликие треугольника.
ОК - медиана треуг. АМД, ОЕ - медиана треуг. ВМС.
Треуг. АМК и ДМК равновеликие.
Треуг. ВМЕ и СМЕ также равновеликие.
Получается, что если от трапеций АВЕК и КЕСД отнять равновеликие треуг. АМК, ВМЕ и ДМК, СМЕ, то в результате останутся два равновеликие треуг. АМВ и СМД.
Доказано.
<span>выделить полный квадрат y =(x - 1)^2 + 4 перенос обратно y = x^2 + 3</span>
Треугольники АВС и ВДЕ подобны - угол В у них общий,
∠ВДЕ = ∠ВАС - как соответственные углы при секушей параллельных прямых
∠ВЕД = ∠ВСА - аналогично прошлому пункту
Коэффициент подобия
k = ДЕ/АС = 10/16 = 5/8
k = ВД/ВА = x/(x+7,2) = 5/8
x/(x+7,2) = 5/8
8x = 5(x+7,2)
8x = 5x + 5*7,2
3x = 5*7,2
x = 5*7,2/3 = 5*2,4 = 12
k = ВE/ВC = y/(y+7,8) = 5/8
y/(y+7,8) = 5/8
8y = 5(y+7,8)
8y = 5y + 5*7,8
3y = 5*7,8
y = 7,8/3 = 5*2,6 = 13
Вроде бы задача на соотношение величин дуг вписанного и центрального углов в окружности. На рисунке оба варианта