Ответ:
(x^2+x+7x+7)*(x-4)=(x^2+8x+7)*(x-4)=x^3-4x^2+8x2-32x+7x-28=x^3+4x^2-25x-28
Объяснение:
В объединение содержатся следующие целые числа: -2;-1;0;1 из первого и 0;1;2;3 из второго. т.к 0 и 1 есть и там, и там, то -2;-1;0;1;2;3. Т.е 6 - целых чисел
Sin³xcosx-sinxcos³x=0,25
sinxcosx(sin²x-cos²x=1/4
4.sinxcosx(sin²x-cos²x)=1
2.2.sinxcosx(sin²x-cos²x)=1
2.sin2x(sin²x-cos²x)=1
sin2x(sin²x-cos²x)=1/2
sin2x(cos²x-sin²x)=-1/2
sin2x.cos2x=-1/2
2.sin2x.cos2x=-1
sin4x=-1
4x=3π/2+2k.π
x=3π/8+k.π/2, k∈Z
==============
1) 1. -2x(1-x)+(2x-3)(x-1)=-2x+2x^2+2x^2-2x-3x+3=4x^2-7x+3
2. 4(1+3x)^2-24x=4(1+6x+9x^2)-24x=4+24x+36x^2-24x=36x^2+4=4(9x^2+1)
3. (x+4)(x-4)-(x-3)^2=x^2-16-(x^2-6x+9)=x^2-16-x^2+6x-9=6x-25
2)1. y-100y^3=y(1-100y^2)=y(1-10y)(1+10y)
2. 7a^2-14ab+7b^2= 7a^2-7ab-7ab+7b^2=(7a^2-7ab)+(-7ab+b^2)=7a(a-b)-7b(a-b)=(a-b)(7a-7b)=7(a-b)(a-b)
4)xy^2-x+5-5y^2=(xy^2-x)+(5-5y^2)=x(y^2-1)-5(y^2-1)=(y^2-1)(x-5)