корень из 17 = 4,123.............................
1) а) монотонно возрастает x [-6;-3] U [2;5]
монотонно убывает x (-3;-2)
б) y>=0 при х [-5;1]U[3;5]
y < 0 при x [-6;-5)U(1;3)
2) а) f(x) = x^2 - 10x - это парабола, ветвями вверх. Функция возрастает от вершины параболы до +бесконечности. Найдем вершину: x0 = 5. Значит f(x) возрастает при х [5; +бесконечность]
б) g(x) = 3/(x-2) + 1 - это гипербола, расположенная в 1 и 3 четвертях, асимптота x=2. Соответственно, в 1 и 3 четвертях функция убывает. Значит утверждение, что g(x) убывает при х=(2; +беск.), верно.
3) а) f(x) = x/5 - 1
f>=0, x>=5
f<0, x<5
б) (x-1)(x+2)/(x-3)(x+4) >=0
1 система:
(x-1)(x+2)>=0
(x-3)(x+4)>0
Решение: x=(-бесконечность; -4) U (3; +бесконечность)
2 система:
(x-1)(x+2)<=0
(x-3)(x+4)<0
Решение: x=[-2;1]
1 способ
у=7х²-4х - графиком функции является параболой - ветви направлены вверх.
Следовательно наибольшего значения функции нет поскольку у →+∞.
Наименьшее значение функция будет достигать в вершине параболы:
х₀=-b/2a=4/14=2/7
y₀=7*(2/7)²-4*2/7=4/7-8/7=-4/7 - наименьшее значение
2 способ
Через производную.
y'=(7x²-4x)'=14x-4
14x-4=0
x=2/7
+ -
_________2/7________
Значит от (-∞; 2/7) функция убывает, следовательно х=2/7 точка минимума
у=7*(2/7)²-4*2/7=-4/7
Ответ у=-4/7