Ответ:
Объяснение:
по т. Виета х1+х2=-b/a=-1/6
1)sinx=1/2; x∈[-2π;2π]
x=(-1)ⁿπ/6+πn
x=-11π/6;-7π/6;π/6;5π/6∈[-2π;2π]
2)sinx=√2/2; x∈[-π;2π]
x=(-1)ⁿπ/4+πn
x=π/4;3π/4∈[-π;2π]
3)sinx=√2/2; x∈[-2π;π/2]
x=(-1)ⁿπ/4+πn
x=-7π/4;-5π/4;π/4∈[-2π;π/2]
√18(cos²7π/8-sin²7π/8)=√18cos7π/4=√18cos(2π-π/4)=√18cosπ/4=
=√18*√2/2=√36/2=6/2=3
(1-ctg²a)*sin²a=sin²a-sin²a*ctg²a=sin²a-sin²a*cos²a/sin²a(далее сокращаем синус в квадрат)=sin²a-cos²a=1-cos²a-cos²a(по формуле sin²a+cos²a=1)=1-2cos²a=2sin²a