. Диагонали равнобедренной трапеции равны, поэтому <span>OC:AO=OB:DO=</span>2:5 и, так как <span>∢BOC=∢AOD</span>, то <span>ΔAOD∼ΔBOC</span> (по второму признаку подобия треугольников: две стороны одного треугольника пропорциональны двум сторонам другого и углы, лежащие между этими сторонами равны). 2. Так как <span>ΔAOD∼ΔBOC</span>, то <span><span>ADBC</span>=<span>AOOC</span>=<span>52</span></span>. Из этого соотношения выражаем и вычисляем большее основание трапеции <span>AD</span>: <span>AD=<span><span>5×BC</span>2</span>=<span><span>5×12</span>2</span>=30</span> см. 3. Вычисляем <span>AE</span>: <span>AE=<span><span>AD−BC</span>2</span>=<span><span>30−12</span>2</span>=<span>182</span>=9</span> см. 4. Так как <span>ΔABE</span> — прямоугольный треугольник, то находим боковую сторону <span>AB</span> по теореме Пифагора: <span>AB=<span><span><span>BE2</span>+<span>AE2</span></span><span>−−−−−−−−−−</span>√</span>=<span><span><span>122</span>+<span>92</span></span><span>−−−−−−−</span>√</span>=<span><span>144+81</span><span>−−−−−−−</span>√</span>=<span>225<span>−−−</span>√</span>=15</span> см. 5. Находим периметр равнобедренной трапеции <span>ABCD</span>: <span>P(ABCD)=</span><span>2×AB+AD+BC=2×15+30+12=72</span> см.
Точки А (-5;-4), В (-4;3), С (-1;-1) являются вершинами треугольника АВС.
докажите, что треугольник АВС равнобедренный.
Длина стороны |АВ| = √((Bx - Ax)² + (By - Ay)²) = √((-4 - (-5))² + (3 - (-4))²) = √50 = 5√2 ≈ 7.07;
Длина стороны |ВC| = √((-1 - (-4))² + (-1 - 3)²) = 5;
Длина стороны |CA| = √((-5 - (-1))² + (-4 - (-1))²) = 5;
|ВC| = |CA| Это значит, что треугольник АВС равнобедренный;
составьте уравнение окружности, имеющий центр в точке С и проходящий через точку В.
Принадлежит ли окружности точка А?
центр в точке С (-1;-1); радиус 5; уравнение окружности; (x+1)²+(y+1)²=5²;
проверяем: принадлежит ли окружности точка А; подставляем её координаты в уравнение;
((-5)+1)²+((-4)+1)²=5²; 25 = 25; точка А принадлежит окружности;
найдите длину медианы, проведенной к основанию треугольника.
Найдем точку F - середина стороны AB: Fx = (-5 + (-4))/2 = -4.5; Fy = (-4 + 3)/2 = -0.5;
F (-4.5; -0.5); С (-1;-1); Длина медианы CF: |CF| = √((-3.5)²+0.5²) = √12.5 = 5/√2 ≈ 3.54;
составьте уравнение прямой, проходящей через точки А и С.
<span>уравнение прямой АС: (x+1)/4 = (y+1)/3; y = 3x/4 - 3/4;</span>
Тангенс угла наклона касательной равен значению производной в данной точке
По неравенству треугольника 3 сторона не больше суммы 2 других то есть сумма всех сторон должна быть больше 9 но меньше 18 хм вроде все подходит