острый-меньше 90 градусов
прямой-90 градусов
тупой- больше 90 градусов
В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине:
AK = AM = p – BC.
Пусть окружность, вписанная в треугольник ABC, касается сторон AB, BC и AC этого треугольника соответственно в точках K, L и M (см. рис. на с. 38) Так как отрезки касательных к окружности, проведенные из одной точки, равны, то AK = AM = x, BK = BL = y,
CL = CM = z. Пусть стороны треугольника равны AB = c, BC = a и AC = b. Имеем:
x+y=c b+c-a
------------
y+z=a ⇒x= 2=p-a
x+z=b
У треугольников существует такое свойство,что если а,в,с стороны треугольника,то для них справедливы неравенства
а<в+с
в<а+с
с<а+в
Проверим для данных чисел
1,8+2,6=4,4 но 4,4 это третья сторона,которая должна быть меньше суммы двух других сторон
Таким образом,треугольник с такими сторонами не существует.
Ответ:
ответ 28.8
Объяснение:
если кол 2м даёт тень 1.6 м, то это составляет 80% длины кола. 1,6/2*100 = 80%
следовательно 80% от длины трубы будет
36*80/100=28.8м
Ответ:
Медиана AM = 18,3 см.
Объяснение:
По условию ΔABC равнобедренный. AB = AC.
AM медиана, отрезок, проведенный из вершины треугольника на середину противолежащей стороны. BM = MC.
Медиана в равнобедренном треугольнике является осью симметрии треугольника и делит его на две равных части.
Периметр ΔABC P₁ = AB + BC + AC = 155 см. Тогда сумма отрезков AB + BM = P₁ / 2 = 155 см / 2 = 77,5 см.
По условию периметр ΔABM P₂ = 95,8 см;
P₂= AB + BM + AM = 77,5 см + AM = 95,8 см;
AM = 95,8 см - 77,5 см = 18,3 см.
AM = 18,3 см.