Замена переменной
-t²-4t+252=0
t²+4t-252=0
D=(-4)²-4·(-252)=16(1+63)=16·64=1024=32²
t=(-4-32)/2=-18 или t=(-4+32)/2=14
x²+5x+18=0 x²+5x-14=0
D=25-72<0 D=25+56=81
корней нет х=-7 или х=2
Ответ. -7; 2
8.1)
Парабола у=2х² пересекается с гиперболой
в одной точке А ( см рисунок в приложении)
А(≈0,8; ≈1,26)
10.1)
Находим корни первого квадратного трехчлена
D=4+60=64
x₁=(2-8)/2=-3 или x₂=(2+8)/2=5
+ - +
----------[-3]-------------------------[5]---------
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Находим корни второго квадратного трехчлена
D=144-4·27=36
x=₃=3 x₄=9
+ - +
-----------(3)------------------(9)--------------
/////////////////////////
Решение системы - пересечение найденных промежутков.
Ответ. (3; 5]
Cos2x+1/2sin2x+sin^2x=0
cos^2x-sin^2x+sinxcosx+sin^2x=0
cos^2x+sinxcosx=0
cosx(cosx+sinx)=0
1). cosx=0
x=pi/2+pin, n принадлежит Z.
2). cosx+sinx=0 sqrt(1^2+1^2)=sqrt(2) Делим всё на sqrt(2)
sqrt(2)/2cosx+sqrt(2)/2sinx=0 Заменим sqrt(2)/2 на синус в первом и на косинус во втором, чтобы получить формулу
sinpi/4cosx+cospi/4sinx=0 Свернём по формуле и получим
sin(pi/4+x)=0
pi/4+x=pik,k принадлежит Z.
x=-pi/4+pik, k принадлежит Z.
1) функция четная
2) x=0, y=-4 (это точки пересечение графика с осью ОУ)
y=0, x=-2;+2 (это точки пересечение графика с осью ОХ)
3) f(x)>0 при хЭ (минус бесконечности; -2) и (2; плюс бесконечнсти)
f(x)<0 при хЭ (-2;2)
4) y'=2*x (производная)
y'=0
2*x=0
x=0- точка экстремума.
f '(x)>0 при xЭ (0; плюс бесконечности)
f '(x)<0 при xЭ (минус бесконечности; 0)
5) Функция возрастает на [0; плюс бесконечности)
Функция убывает на (минус бесконечности; 0]
6) Хmin=0- точка минимума
f(Xmin)=-4
7) на графике рисуешь что-то похожее на параболу, с вершиной в точке (0;-4)
тоесть, у тя сначало функция убывает до этой точки, затем возрастает.
А точки, которые были найдены в пункте 2) это есть точки пересечения с осями, их тоже надо на графике обозначить.