3+х≥8х-(3х+7)
3-7х≥-3х-7
4х≤10
х≤2,5
Ответ: х≤2,5
3(5x-2x^2-5+2x)-x+7=21x-6x^2-15-x+7=-6x^2+20x-8
x=-1
-6*(-1)^2+20*-1-8=-6-20-8=-34
ответ = -34
2sin30cos10-cos10=2*1/2cos10-cos10=cos10-cos10=0
1
Если графиком является прямая линия, проходящая через начало координат и образующая с осью ОX угол α (угол наклона прямой к положительной полуоси ОХ). Функция, описывающая эту прямую, будет иметь вид y = kx. Коэффициент пропорциональности k равен tg α. Если прямая проходит через 2-ю и 4-ю координатные четверти, то k < 0, и функция является убывающей, если через 1-ю и 3-ю, то k > 0 и функция возрастает.Пусть график представляет собой прямую линию, располагающуюся различным образом относительно осей координат. Это линейная функция, и она имеет вид y = kx + b, где переменные x и y стоят в первой степени, а k и b могут принимать как положительные, так и отрицательные значения или равны нулю. Прямая параллельна прямой y = kx и отсекает на оси ординат |b| единиц. Если прямая параллельна оси абсцисс, то k = 0, если оси ординат, то уравнение имеет вид x = const.
2Кривая, состоящая из двух ветвей, располагающихся в разных четвертях и симметричных относительно начала координат, называется гиперболой. Этот график выражает обратную зависимость переменной y от x и описывается уравнением y = k/x. Здесь k ≠ 0 - коэффициент обратной пропорциональности. При этом если k > 0, функция убывает; если же k < 0 - функция возрастает. Таким образом, областью определения функции является вся числовая прямая, кроме x = 0. Ветви гиперболы приближаются к осям координат как к своим асимптотам. С уменьшением |k| ветки гиперболы все больше «вдавливаются» в координатные углы.
3Параболой является также график степенной функции, выраженной уравнением y = xⁿ, если n – любое четное число. Если n - любое нечетное число, график такой степенной функции будет иметь вид кубической параболы.
В случае, если n – любое отрицательное число, уравнение функции приобретает вид. Графиком функции при нечетном n будет гипербола, а при четном n их ветви будут симметричны относительно оси ОУ
A₁=2.8;a₂=-0.4
a₂=a₁+d;
d=a₂-a₁=-0.4-2.8=-3.2;
a₃=a₂+d=a₁+2d=2.8+2·(-3.2)=-3.6;
a₄=a₁+3d=2.8+3·(-3.2)=-6.8;
a₅=a₁+4d=2.8+4·(-3.2)=-10;
a₆=a₁+5d=2.8+5·(-3.2)=-13.2.