<em>Дана окружность (x-1)²+(y-1)²=2²; искомая окружность имеет уравнение</em>
<em> (x-4)²+(y+3)²=R² , где R- радиус, подлежащий определению.</em>
<em>Ищем расстояние между центрами окружностей по формуле расстояния между двумя точками √((x₁-x₂)²+(y₁-y₂)²)</em>
<em>=√((4-1)²+(-3-1)²)=√(9+16)=√25=5 больше 2- радиуса первой окружности, то</em>
<em>окружности касаются внешним образом и расстояние между их центрами равно сумме радиусов, т.е. R+3=5,откуда R=5-2=3;</em>
<em>Зная координаты центра и радиус окружности, можно составить ее уравнение. (x-4)²+(y+3)²=3² </em>
<em>Ответ (x-4)²+(y+3)²=9 </em>
<span>площадь боковой поверхности цилиндра равна 2πR*h = 100π см</span>² (h -высота цилиндра)
площадь осевого сечения равна 2R*h. Отсюда <span>площадь осевого сечения равна 100см</span>²
По известной теореме<span> <em>через любую точку пространства вне данной прямой можно провести прямую, параллельную данной прямой, и притом только одну</em>.
</span>Проекцией точки <em>а</em> на плоскость будет точка <em>а'</em>.
Через нее на данной плоскости можно провести бесчисленное количество прямых, и через каждую из этих прямых и точку вне плоскости можно провести прямую, параллельную прямой, проведенной в плоскости.
Следовательно, <em>через точку, не лежащую на данной плоскости, можно провести бесчисленное количество прямых, которые будут параллельны данной плоскости. </em>
1.Все стороны и углы равны
2.Есть угол в 90©,сумма остальных двух углов не больше 90
3.в треугольнике может быть только один тупой угол.
4.сумма углов 180©(хотя так везде)