Пусть у нас есть равнобедренная трапеция со сторонами:
a - большее основание трапеции (a=25 см);
b- меньшее основание трапеции (b=7 см);
с - боковая сторона трапеции
d1 - диагональ трапеции (d1=20 см)
Найдем боковую сторону по известным нам сторонам по формуле:
Далее находим <span>радиус описанной окружности равнобедренной трапеции по формуле:
</span>
, где
, откуда
Ответ: R=12.5 см
Задача 91, решение.
ACD это прямоугольный треугольник, с катетами AC и CD, нам известен угол между катетом CD и гипотенузой AD, это угол 55, из условий задачи.
Находим угол CAD, 180 - 90 - 55 = 35.
Так как это трапеция и ее стороны BC и AD параллельны, то угол BCA = углу CAB, этот угол мы уже нашли = 35. BCA =35.
Складываем два угла ACD + BCA и находим угол трапеции BCD = 90 + 35 = 125. Так как стороны BC и AB по условиям задачи равны, то угол BAC равен углу BCA = 35. Находим угол трапеции BAD складывая углы BAC и CAD = 35 + 35 = 70. Нам уже известны 3 угла трапеции, 55, 125 и 70, находим последний угол трапеции.
Так как сумма всех углов трапеции всегда равна 360, вычисляем угол ABC = 360 - 55 - 125 - 70 = 110.
Ответ: Углы равны (CDA) 55, (BCD) 125, (BAD) 70, (ABC) 110.
Ну, вот мы и снова у сказки в гостях-
Никто не расскажет о том в новостях.
Да мы и не думали шум создавать,
Мы будем тихонько страницы листать,
Трудиться с героями, переживать,
<span>Грустить, веселиться, о чуде мечта</span>
Спроецируем точку M на плоскость треугольника. Точка на плоскости будет M1. Т.к. M1 равноудалена от всех сторон треугольника, то она является центром вписанной окружности
Второй катет равен √25^2-15^2=√400=20
Радиус вписанной окружности в прямоугольном треугольнике равен ((25+20+15)-2*25)/2=5
Расстояние от M до любой стороны √(5^2+(5√3)^2)=√100=10