(3х+7)^2 - (3х-7)^2
_____________ = <u>9x</u>²<u>+42x+49-9x</u>²<u>+42x-49</u> = <u>64x </u> =64
<span> х x x</span>
sin²x - 2sinxcosx - 3cos²x = 0 | : cos²x
tg²x - 2tgx - 3 = 0
замена: tgx = a
a² - 2a - 3 = 0
по т. Виета:
a₁ = 3
a₂ = -1
обратная замена:
tgx = 3
x₁ = arctg3 + πn, n∈Z
tgx = -1
x₂ = -π/4 + πn, n∈Z
На промежутке [-π;π/2] уравнение имеет 2 кореня: -π/4; arctg3 я думаю что вот так
В бесконечной геометрической прогрессии сумма S=c1/1-q, то c1=s(1-q) тогда c1= 4215*4/3<span>5620</span>
Решение
1) cos720+tg 30 ctg 210+sin 120 = сos2*360° + tg30°ctg(180° + 30°) +
+ sin(90° + 30)° = 1 + 1/√3*ctg30° + sin30° = 1 + (1/√3)*(√3) + 1/2 = 1 + 1 + 1/2 = 2(1/2)
<span>tg0 </span>°<span>- 2ctg90</span>° <span>- sin0</span>° <span>- 3cos90</span>° = 0 - 2*0 - 0 - 3*0 = 0