ABCD-ромб
AC и BD-диоганали и пересекаются точке О
AB=6 см
∠А=60°
S=?
Решение:
∠B=180-60=120 так как углы прилежащи к одной стороне ромба =180
∠ABD=∠DBC=120:2=60 так как диоганали ромба являются биссектрисами
AB=AD=6см так как все стороны ромба равны
AB=AD,∠ABD=∠BAD=60°⇒ΔABD-равносторонний Δ⇒BD диоганаль=6 см
BO=OD=6:2=3 см так как диоганали ромба пересекаются и точкой пересечение делит их пополам
AO=CO
По Теореме Пифагора:
AO²=6²-3²
AO=√36-9=√25=5
AC=5*2=10 см
S ромба=d1*d2:2=10*6:2=30 см²
Ответ:S ромба=30 см²
Ответ 12м
Квадрат гипотенузы равен сумме квадратов катетов:
Мы имеем: А=х;В=5м;С=13м.
А*2=С*2-В*2
А*2=13*2-5*2=169-25=144
А=12м
Осевое сечение конуса равнобедренная трапеция
S=(a+b)*h/2
a=2см, b=4 см, h-?
СМ и ВК высоты трапеции
АК=МД=(4-2)/2
МД=1 см
прямоугольный ΔАМС: по теореме Пифагора
АС²=АМ²+СМ²
10²=1²+СМ², СМ²=99
СМ=3√11 см
h=3√11
S=(2+4)*3√11/2
<u>S=9√11 см²</u>
180-75=105-(сумма двух остальных углов треугольника)
105/2=52,5-(два равных угла при основании)
а в равнобедренном треугольнике углы при основании равны