Решаем через дискриминант:
-x^2+5*x+43=0
a = -1; b = 5; c = 43
D = b^2 - 4*a*c
D = 5^2 - 4*(-1)*43 = 197 > 0
x = (-b+-D^1/2)/(2*a) (Пояснение: ^1/2 - корень)
x_1,2 = (-5+-197^1/2)/(2*(-1))
x_1 = (-5-197^1/2)/(-2)
x_2 = (-5+197^1/2)/(-2)
Сумма корней:
x_1+x_2 =
(-5-197^1/2)/(-2) + (-5+197^1/2)/(-2) = (-5-(197^1/2) -5+(197^1/2))/(-2) =
(-10) / (-2) = 5
1) (1/a)+(1/b)=(1×b+1×a)/a×b=(b+a)/ab;
2) ((a+c)/ab)+(b/abc)=((a+c)×c+b)/abc=(ac+c²+b)/abc
1.
р=1/6 - вероятность выпадения шестерки;
q=1-p=1-(1/6)=5/6 - вероятность невыпадения шестерки.
Р=(5/6)·(5/6)=25/36.
2. Решение неравенства х²-2х≤0: отрезок [0;2].
Решение неравенства | x - 2 |≥ 1: (-∞;1]U[3;+∞)
[0;1] является решением и первого и второго неравенства одновременно.
р=1/2
Применяем определение геометрической вероятности и дели длину отрезка [0;1] на длину отрезка [0;2].
Https://ru-static.z-dn.net/files/d4c/74f4289962ebdcff620ccc469daf6498.jpg