<span>1) f(x)=√3x+1, x0=5;
</span>
<span>f'(5) = 3/(2sqrt(16)) = 3/8
2) f(x) = sin^5x, x0=π/3
f'(x) = 5cos(5x)
f'(</span>π/3) = 5cos(5π/3) = 5cos(2π-π/3) = 5cos(π/3) = 5/2
(2x²-x-1)/(2x³+x²-2x-1)=x+1.
2x²-x-1=x²+x²-x-1=(x²-x)+(x²-1)=x(x-1)+(x-1)(x+1)=(x-1)(x+x+1)=(x-1)(2x+1)
2x³+x²-2x-1=(2x³-2x)+(x²-1)=2x(x²-1)+(x²-1)=(x+1)(x-1)(2x+1)
2x³-1/3y³=2×(-1/2)³-1/3×(-3)²=2×(-1/8)-1/3×9=-1/4-3=-3 целых 1/4