Т.к. AB = BC, то треугольник ABC - равнобедренный с основанием AC.
Рассмотрим треугольники BAD и BCE. У них:
AB = BC - по условию;
AD = CE - по условию;
угол BAD = углу BCE - т.к. в р/б треугольники углы при основании равны.
Т.к. у равных треугольников соответственные стороны равны, то BD = BE, что и требовалось доказать.
Решение:
треугольник AOB = тругольнику COD (по 1-ому признаку равенства трегольников)
AO=OC, BO=OD (по условию)
следовательно AB=CD угол 1= углу 2
A1ADD1 - квадрат из того, что ABCDA1B1C1D1 - прямоугольный паралелепипед. Следовательно D1D = 3см. То S(полн.) = 2(3*3+3*4+3*4) = 2(9 + 24) = 2*33 = 66 (см²)
Ответ на данный вопрос:С)Средиземное море.