Точка Е - середина основания ВС, точка К - середина оскования АД. Значит на отрезке ЕК лежит точка М.
Для начала рассмотрим две трапеции, на которые отрезок ЕК поделил трапецию АВСД.
Трапеции АВЕК и КЕСД равновеликие, поскольку у них равны верхние и нижние основания и высота (так как Е и К середины оснований).
Известно, что медиана делит треугольник на два равновеликие треугольника.
ОК - медиана треуг. АМД, ОЕ - медиана треуг. ВМС.
Треуг. АМК и ДМК равновеликие.
Треуг. ВМЕ и СМЕ также равновеликие.
Получается, что если от трапеций АВЕК и КЕСД отнять равновеликие треуг. АМК, ВМЕ и ДМК, СМЕ, то в результате останутся два равновеликие треуг. АМВ и СМД.
Доказано.
Обозначим меньший катет за x, тогда больший катет равен x+2.
Площадь прямоугольного треугольника равна половине произведения катетов, то есть, x(x+2)/2. Значит, x(x+2)/2=24 ⇒ x(x+2)=48 ⇒ x²+2x=48 ⇒ x²+2x-48=0.
Решим это квадратное уравнение. D=2²+48*4=196=14².
x₁=(-2+14)/2=6, x₂=(-2-14)/2=-8.
Катет треугольника имеет положительную длину, значит, нужный нам корень - x=6. То есть, меньший катет равен 6.
Угол создали в двернегречиском веке, учёные доказывают что угол был изобретён человеком в 19 веке
Пусть даны треугольник ABC с прямым углом С, биссектриса AE острого угла A, точка K пересечения биссектрисы AE и высоты CH. Треугольники AKC и ABE подобны по двум углам (<ACK=<B (<BCH=90°-<B, <ACK=90°-<BCH⇒<ACK=<B), <CAK=EAB (AE <span>– </span>биссектриса))⇒AK/AE=AC/AB=sinB⇒sinB=(3+2√3)/(4+2√3)=√3(2+√3)/(2(2+√3))=√3/2⇒т.к. <B<90°, то <B=60°⇒<A=30°.