Мв=5
Ав=10
Т.к точка м серидина!!!!
В прямоугольном треугольнике АВС по Пифагору катет АС = √(АВ²-ВС²) = √(169-25) = 12.
По формуле радиуса окружности, вписанной в прямоугольный треугольник, находим этот радиус.
Он равен r= a*b/(a+b+c), где a и и - катеты, а с - гипотенуза. У нас r= 5*12/(5+12+13) = 60/30 = 2.
В прямоугольном треугольнике АОМ по Пифагору АО = √(АМ²-ОМ²) = √(100-4) = 4√6.
Треугольники АОМ и OQP подобны, отсюда следует, что АО/OQ=ОМ/QP. Из этого соотношения имеем: 4√6/(R+2) = 2/(R-2), то есть R=(8√6+4)/(4√6-2)=4(2√6+1)/2(2√6-1).
Умножим числитель и знаменатель на (2√6+1). Тогда получим:
R=2*(2√6+1)²/((2√6)²-1²) = 2*(25+4√6)/23 = (50+8√6)/23.
Применено определение двугранного угла
R=18 т.к в окружности есть два радиуса то если касательная с радиусами это треугольник а в треугольнике сумма углов = 180 градусов ,а радиусы всегда равны то 180-60=120делим на два =60 градусов отсюда следует что треугольник равносторонний то радиус =18
S = a²
S = 16² = 256
S = 5.5² = 30,25
S = √a² = a